Abstract
AbstractClostridium perfringens-induced necrotic enteritis (NE) has reemerged as a prevalent chicken disease worldwide due to reduced usage of prophylactic antibiotics. The lack of antimicrobial alternative strategies to control NE is mainly due to limited insight into the disease pathogenesis. The aim of this study is to investigate the role of microbiota metabolic product secondary bile acid deoxycholic acid (DCA) on preventing NE.C. perfringensgrowth was inhibited by 82.8% in 50 μM DCA Tryptic Soy Broth. SequentialEimeria maximaandC. perfringenschallenges induced acute NE showed as severe intestinal inflammation and body weight (BW) loss in broiler chickens, while 1.5 g/kg DCA diet dramatically reduced the disease. At the cellular level, DCA alleviated NE-associated ileal epithelial death and reduced lamina propria cell apoptosis. Interestingly, DCA reducedC. perfringensinvasion into ileum without altering the bacterial ileal luminal colonization. Molecular analysis showed that DCA reduced inflammatory mediators ofInfγ,Litaf, andMmp9mRNA accumulation in ileal tissue. Mechanism studies revealed thatC. perfringensinduced elevated expression of inflammatory mediators ofInfγ,Litaf,Mmp9,andPtgs2(Cyclooxygenase- 2 (COX-2) gene) in chicken splenocytes. Blocking COX signaling by pharmacological inhibitor aspirin attenuated INFγ-induced inflammatory response in the splenocytes. Consistent with thein vitroassay, chickens fed 0.12 g/kg aspirin diet protected the birds against NE-induced ileal inflammation, intestinal cell apoptosis, and BW loss. In conclusion, microbial metabolic product DCA prevents NE-induced ileal inflammation and BW loss through attenuating inflammatory response. These novel findings offer new strategies againstC. perfringens-induced diseases.Significance StatementWidespread antimicrobial resistance has become a serious challenge to both agricultural and healthcare industries. Withdrawing antimicrobials without effective alternatives exacerbates chicken productivity loss at billions of dollars every year, caused by intestinal diseases, such as coccidiosis-andC. perfringens-induced necrotic enteritis. This study revealed that microbial metabolic product secondary bile acid DCA preventsC. perfringens-induced intestinal disease in chickens through modulating inflammatory COX signaling pathways. Therefore, microbiome and its downstream targets of host inflammatory responses could be used to control NE. These findings have opened new avenues for developing novel antimicrobial free alternatives to prevent or treatC. perfringens-induced diseases.
Publisher
Cold Spring Harbor Laboratory