Computational evidence of a new allosteric communication pathway between active sites and putative regulatory sites in the alanine racemase ofMycobacterium tuberculosis

Author:

Jyothikumar JayanthyORCID,Chandani SushilORCID,Ramakrishna TangiralaORCID

Abstract

AbstractAlanine racemase, a popular drug target fromMycobacterium tuberculosis, catalyzes the biosynthesis of D-alanine, an essential component in bacterial cell walls. With the help of elastic network models of alanine racemase fromMycobacterium tuberculosis, we show that the mycobacterial enzyme fluctuates between two undiscovered states—a closed and an open state. A previous experimental screen identified several drug-like lead compounds against the mycobacterial alanine racemase, whose inhibitory mechanisms are not known. Docking simulations of the inhibitor leads onto the mycobacterial enzyme conformations obtained from the dynamics of the enzyme provide first clues to a putative regulatory role for two new pockets targeted by the leads. Further, our results implicate the movements of a short helix, behind the communication between the new pockets and the active site, indicating allosteric mechanisms for the inhibition. Based on our findings, we theorize that catalysis is feasible only in the open state. The putative regulatory pockets and the enzyme fluctuations are conserved across several alanine racemase homologs from diverse bacterial species, mostly pathogenic, pointing to a common regulatory mechanism important in drug discovery.Author summaryIn spite of the discovery of many inhibitors against the TB-causing pathogenMycobacterium tuberculosis, only a very few have reached the market as effective TB drugs. Most of the marketed TB drugs induce toxic side effects in patients, as they non-specifically target human cells in addition to pathogens. One such TB drug, D-cycloserine, targets pyridoxal phosphate moiety non-specifically regardless of whether it is present in the pathogen or the human host enzymes. D-cycloserine was developed to inactivate alanine racemase in TB causing pathogen. Alanine racemase is a bacterial enzyme essential in cell wall synthesis. Serious side effects caused by TB drugs like D-cycloserine, lead to patients’ non-compliance with treatment regimen, often causing fatal outcomes. Current drug discovery efforts focus on finding specific, non-toxic TB drugs. Through computational studies, we have identified new pockets on the mycobacterial alanine racemase and show that they can bind drug-like compounds. The location of these pockets away from the pyridoxal phosphate-containing active site, make them attractive target sites for novel, specific TB drugs. We demonstrate the presence of these pockets in alanine racemases from several pathogens and expect our findings to accelerate the discovery of non-toxic drugs against TB and other bacterial infections.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. World Health Organization [Internet]. World Health Organization. 2018 [cited 20 January 2018]. Available from: http://www.who.int/en/

2. Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis

3. New structural classes of antituberculosis agents;Medicinal research Reviews,2017

4. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice;Microbiology,2011

5. Reaction Mechanism of Alanine Racemase from Bacillus stearothermophilus

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3