Prion-like spreading of Alzheimer’s disease within the brain’s connectome

Author:

Fornari Sveva,Schäfer Amelie,Jucker Mathias,Goriely AlainORCID,Kuhl Ellen

Abstract

The prion hypothesis states that misfolded proteins can act as infectious agents that trigger the misfolding and aggregation of healthy proteins to transmit a variety of neurodegenerative diseases. Increasing evidence suggests that pathogenic proteins in Alzheimer’s disease adapt prion-like mechanisms and spread across the brain along an anatomically connected network. Local kinetics models of protein misfolding and global network models of protein diffusion provide valuable insight into the dynamics of prion-like diseases. Yet, to date, these models have not been combined to simulate how pathological proteins multiply and spread across the human brain. Here we model the prion-like spreading of Alzheimer’s disease by combining misfolding kinetics and network diffusion through a connectivity-weighted Laplacian graph created from 418 brains of the Human Connectome Project. The nodes of the graph represent anatomic regions of interest and the edges represent their con-nectivity, weighted by the mean fiber number divided by the mean fiber length. We show that our brain network model correctly predicts the neuropathological pattern of Alzheimer’s disease and captures the key characteristic features of whole brain models at a fraction of their computational cost. To illustrate the potential of brain network modeling in neurodegeneration, we simulate biomarker curves, infection times, and two promising therapeutic strategies to delay the onset of neurodegeneration: reduced production and increased clearance of misfolded protein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3