Stage specific classification of DEGs via statistical profiling and network analysis reveals potential biomarker associated with various stages of TB

Author:

Ishrat Romana

Abstract

AbstractBackgroundTuberculosis (TB) is a deadly transmissible disease that can infect almost any body-part of the host but is mostly infect the lungs. It is one of the top 10 causes of death worldwide. In the 30 high TB burden countries, 87% of new TB cases occurred in 2016. Seven countries: India, Indonesia, China, Philippines, Pakistan, Nigeria, and South Africa accounted for 64% of the new TB cases. To stop the infection and progression of the disease, early detection of TB is important. In our study, we used microarray data set and compared the gene expression profiles obtained from blood samples of patients with different datasets of Healthy control, Latent infection, Active TB and performed network-based analysis of DEGs to identify potential biomarker.ObjectivesWe want to observe the transition of genes from normal condition to different stages of the TB and identify, annotate those genes/pathways/processes that play key role in the progression of TB disease during its cyclic interventions in human body.ResultsWe identified 319 genes that are differentially expressed in various stages of TB (Normal to LTTB, Normal to Active TB and LTTB to active TB) and allocated to pathways from multiple databases which comprised of curated class of associated genes. These pathway’s importance was then evaluated according to the no. of DEGs present in the pathway and these genes show the broad spectrum of processes that take part in every state. In addition, we studied the regulatory networks of these classified genes, network analysis does consider the interactions between genes (specific for TB) or proteins provide us new facts about TB disease, which in turn can be used for potential biomarkers identification. We identified total 29 biomarkers from various comparison groups of TB stages in which 14 genes are over expressed as host responses against pathogen, but 15 genes are down regulated that means these genes has allowed the process of host defense to cease and give time to pathogen for its progression.ConclusionsThis study revealed that gene-expression profiles can be used to identify and classified the genes on stage specific pattern among normal, LTTB and active TB and network modules associated with various stages of TB were elucidated, which in turn provided a basis for the identification of potential pathways and key regulatory genes that may be involved in progression of TB disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3