Author:
Stein-O’Brien Genevieve,Kagohara Luciane T,Li Sijia,Thakar Manjusha,Ranaweera Ruchira,Ozawa Hiroyuki,Cheng Haixia,Considine Michael,Schmitz Sandra,Favorov Alexander V,Danilova Ludmila V,Califano Joseph A,Izumchenko Evgeny,Gaykalova Daria A,Chung Christine H,Fertig Elana J
Abstract
AbstractBACKGROUNDTargeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients’ treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. To determine the dynamics of these molecular changes, we obtained high throughput omics data weekly during the development of cetuximab resistance in a head and neck cancer in vitro model.RESULTSAn unsupervised algorithm, CoGAPS, was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically.CONCLUSIONSGenes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize resistance. These genes include FGFR1, which was associated with EGFR inhibitor resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. Our findings provide a relevant towards better understanding of the time course progression of changes resulting in acquired resistance to targeted therapies. This is an important contribution to the development of alternative treatment strategies that would introduce new drugs before the resistant phenotype develops.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献