Abstract
AbstractA key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system. In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain led to a ‘critical’ transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.Author summaryHigher brain function relies on a dynamic balance between functional integration and segregation. Previous work has shown that this balance is mediated in part by alterations in neural gain, which are thought to relate to projections from ascending neuromodulatory nuclei, such as the locus coeruleus. Here, we extend this work by demonstrating that the modulation of neural gain alters the information processing dynamics of the neural components of a biophysical neural model. Specifically, we find that low levels of neural gain are characterized by high Active Information Storage, whereas higher levels of neural gain are associated with an increase in inter-regional Transfer Entropy. Our results suggest that the modulation of neural gain via the ascending arousal system may fundamentally alter the information processing mode of the brain, which in turn has important implications for understanding the biophysical basis of cognition.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献