Exploring the impact of inoculum dose on host immunity and morbidity to inform model-based vaccine design

Author:

Handel Andreas,Li Yan,McKay Brian,Pawelek Kasia A.,Zarnitsyna Veronika,Antia Rustom

Abstract

AbstractBackgroundVaccination is an effective method to protect against infectious diseases. An important consideration in any vaccine formulation is the inoculum dose, i.e., amount of antigen or live attenuated pathogen that is used. Higher levels generally lead to better stimulation of the immune response but might cause more severe side effects and allow for less population coverage in the presence of vaccine shortages. Determining the optimal amount of inoculum dose is an important component of rational vaccine design. A combination of mathematical models with experimental data can help determine the impact of the inoculum dose.MethodsWe designed mathematical models and fit them to data from influenza A virus (IAV) infection of mice and human parainfluenza virus (HPIV) of cotton rats at different inoculum doses. We used the model to predict the level of immune protection and morbidity for different inoculum doses and to explore what an optimal inoculum dose might be.ResultsWe show how a framework that combines mathematical models with experimental data can be used to study the impact of inoculum dose on important outcomes such as immune protection and morbidity. We find that the impact of inoculum dose on immune protection and morbidity depends on the pathogen and both protection and morbidity do not always increase with increasing inoculum dose. An intermediate inoculum dose can provide the best balance between immune protection and morbidity, though this depends on the specific weighting of protection and morbidity.ConclusionsOnce vaccine design goals are specified with required levels of protection and acceptable levels of morbidity, our proposed framework which combines data and models can help in the rational design of vaccines and determination of the optimal amount of inoculum.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3