Abstract
AbstractClostridium difficileis a potentially lethal gut pathogen that causes nosocomial and community acquired infections. Limited treatment options and reports of reduced susceptibility to current treatment emphasize the necessity for novel antimicrobials. The DNA-polymerase of gram-positive organisms is an attractive target for the development of antimicrobials. ACX-362E (N2-(3<,4-Dichlorobenzyl)-7-(2-[1-morpholinyl]ethyl)guanine; MorE-DCBG) is a DNA polymerase inhibitor in pre-clinical development as a novel therapeutic againstC. difficileinfection. This synthetic purine shows preferential activity againstC. difficilePolC over those of other organismsin vitroand is effective in an animal model ofC. difficileinfection. In this study we have determined its efficacy against a large collection of clinical isolates. At concentrations below the minimal inhibitory concentration, the presumed slowing (or stalling) of replication forks due to ACX-362E leads to a growth defect. We have determined the transcriptional response ofC. difficileto replication inhibition and observed an overrepresentation of up-regulated genes near the origin of replication in the presence of PolC-inhibitors, but not when cells were subjected to sub-inhibitory concentrations of other antibiotics. This phenomenon can be explained by a gene dosage shift, as we observed a concomitant increase in the ratio between origin-proximal versus terminus-proximal gene copy number upon exposure to PolC-inhibitors. Moreover, we show that certain genes differentially regulated under PolC-inhibition are controlled by the origin-proximal general stress response regulator sigma factor B. Together, these data suggest that genome location both directly and indirectly determines the transcriptional response to replication inhibition inC. difficile.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献