Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks

Author:

Avsec ŽigaORCID,Barekatain Mohammadamin,Cheng JunORCID,Gagneur JulienORCID

Abstract

AbstractMotivationRegulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries, or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed.ResultsHere we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 114 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox.AvailabilitySpline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at goo.gl/3yMY5w.Contactavsec@in.tum.de; gagneur@in.tum.de

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Abadi, M. , et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

2. Alexandari, A. M. et al. (2017). Separable Fully Connected Layers Improve Deep Learning Models For Genomics. bioRxiv, page 146431.

3. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

4. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning

5. Bastien, F. et al. (2012). Theano: new features and speed improvements. CoRR, abs/1211.5.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3