Genetic architecture of male courtship behavior differences in the parasitoid wasp genus Nasonia (Hymenoptera; Pteromalidae)

Author:

Gadau J,Pietsch C.,Gerritsma S.,Ferber S.,van de Zande L.,van den Assem J.,Beukeboom L.W.

Abstract

AbstractVery little is known about the genetic basis of behavioral variation in courtship behavior, which can contribute to speciation by prezygotic isolation of closely related species. Here, we analyze the genetic basis and architecture of species differences in the male courtship behavior of two closely related parasitoid wasps Nasonia vitripennis and N. longicornis. Both species occur microsympatrically in parts of their ranges and have been found in the same host pupae. Despite strong postzygotic isolation mechanisms between these two Nasonia species, viable hybrid females can be produced in the laboratory if both species are cured of their Wolbachia endosymbionts. We used haploid F2 hybrid males derived from virgin F1 hybrid females of two independent mapping populations to study the genetic architecture of five quantitative and two qualitative components of their courtship behavior. A total of 14 independent Quantitative Trait Loci (QTL) were found in the first mapping population (320 males), which explained 4-25% of the observed phenotypic variance. Ten of these QTL were confirmed by a second independent mapping population (112 males) and no additional ones were found. A genome-wide scan for two-loci interactions revealed many unique but mostly additive interactions explaining an additional proportion of the observed phenotypic variance. Courtship QTL were found on all five chromosomes and four loci were associated with more than one QTL, indicating either possible pleiotropic effects of individual QTL or individual loci contributing to multiple courtship components. Our results indicate that these two evolutionary young species have rapidly evolved multiple significant phenotypic differences in their courtship behavior that have a polygenic and highly interactive genetic architecture. Based on the location of the QTL and the published Nasonia genome sequence we were able to identify a series of candidate genes for further study.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3