Modulating long-range energetics via helix stabilization: a case study using T4 lysozyme

Author:

Rosemond Sabriya N.,Hamadani Kambiz M.,Cate Jamie H.D.,Marqusee Susan

Abstract

Cooperative protein folding requires distant regions of a protein to interact and provide mutual stabilization. The mechanism of this long-distance coupling remains poorly understood. Here, we use T4 lysozyme (T4L*) as a model to investigate long-range communications across a globular protein. T4L* is composed of two structurally distinct subdomains, although it behaves in a two-state manner at equilibrium. The subdomains of T4L* are connected via two topological connections: the N-terminal helix that is structurally part of the C-terminal subdomain (the A-helix) and a long helix that spans both subdomains (the C-helix). To understand the role that the C-helix plays in cooperative folding, we analyzed a circularly permuted version of T4L* (CP13*), whose subdomains are connected only by the C-helix. We demonstrate that when isolated as individual fragments, both subdomains of CP13* can fold autonomously into marginally stable conformations. The energetics of the N-terminal subdomain depend on the formation of a salt bridge known to be important for stability in the full-length protein. We show that the energetic contribution of the salt bridge to the stability of the N-terminal fragment increases when the C-helix is stabilized, such as occurs upon folding of the C-terminal subdomain. These results suggest a model where long-range energetic coupling is mediated by helix stabilization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3