High-resolution MEMRI characterizes laminar specific ascending and descending spinal cord pathways in rats

Author:

Krishnan Vijai,Xu Jiadi,Mendoza German Alberto,Koretsky Alan,Anderson Stasia A,Pelled Galit

Abstract

AbstractManganese Enhanced MRI (MEMRI) utilizing different manganese chloride (MnCl2) delivery methods, has yielded valuable architectural, functional and connection information about the brain. MEMRI also has the potential in characterizing neural pathways in the spinal cord. The spinal cord grey matter is anatomically composed of nine distinct cellular laminae, where each of the laminae receives input from a specific type of neuronal population and process or serves as a relay region in a specific sensory or motor pathway. This type of laminar arrangement in the spinal cord is currently only visualized by histological methods. It is of significant interest to determine whether laminar specific enhancement by Mn2+ can be achieved in the spinal cord, as has been reported in the brain and olfactory pathway. Here we focus on using MEMRI to determine the specific laminae of the thoracic region of the spinal cord. We focus on MnCl2 changes in the ascending and descending tracts of the spinal cord. Major factors in applying this technique in the spinal cord are the ability to acquire high-resolution spinal cord images and to determine a noninvasive route of administration which will result in uptake by the central nervous system.We have applied the MEMRI approach by intraperitoneal (i.p). delivery of MnCl2 and imaged lumbar and thoracic spinal cord levels in rats to determine whether T1 weighted MRI can detect spinal cord laminae 48 hours following MnCl2 administration. T1 weighted images of the lower lumbar level were obtained from MnCl2 injected and control rats. Here we demonstrate laminar specific signal enhancement in the spinal cord of rats administered with MnCl2 vs. controls in MRI of the cord with ultra-high, 69 μm in-plane resolution. We also report reduced T1 values over time in MnCl2 groups across laminae I-IX. The regions with the largest T1 enhancements were observed to correspond to laminae that contain either high cell density or large motor neurons, making MEMRI an excellent tool for studying spinal cord architecture, physiology and function in different animal models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3