Antisense inhibition of accA in E. coli suppressed luxS expression and increased antibiotic susceptibility

Author:

Hillman TatianaORCID

Abstract

ABSTRACTBacterial multiple drug resistance is a significant issue for the medical community. Gram-negative bacteria exhibit higher rates of multi-drug resistance, partly due to the impermeability of the Gram-negative bacterial cell wall and double-membrane cell envelope, which limits the internal accumulation of antibiotic agents. The outer lipopolysaccharide membrane regulates the transport of hydrophobic molecules, while the inner phospholipid membrane controls influx of hydrophilic particles. In Escherichia coli, the gene accA produces the acetyl-CoA carboxylase transferase enzyme required for catalyzing synthesis of fatty acids and phospholipids that compose the inner membrane. To increase antibiotic susceptibility and decrease growth, this study interrupted fatty acid synthesis and disrupted the composition of the inner membrane through inhibiting the gene accA with antisense RNA. This inhibition suppressed expression of luxS, a vital virulence factor that regulates cell growth, transfers intercellular quorum-sensing signals mediated by autoinducer-2, and is necessary for biofilm formation. Bacterial cells in which accA was inhibited also displayed a greater magnitude of antibiotic susceptibility. These findings confirm accA as a potent target for developing novel antibiotics such as antimicrobial gene therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3