Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication

Author:

Tripuraneni Vinay,Memisoglu Gonen,Zhu Wei,Tran Trung,Hartemink Alexander J,Haber James EORCID,MacAlpine David MORCID

Abstract

AbstractAlthough the molecular events required for the repair of double-strand breaks (DSB) have been well characterized, the role of epigenetic processes in the recognition and repair of DSBs has only been investigated at low resolution. We rapidly and synchronously induced a site-specific DSB inSaccharomyces cerevisiaeupstream of thePHO5locus, which has well-positioned nucleosomes. Utilizing MNase-seq epigenome mapping we interrogated the order of chromatin changes that occur immediately following a DSB by generating a base-pair resolution map of the chromatin landscape. In wild type cells, the first nucleosome left of the break was rapidly evicted. The eviction of this flanking nucleosome was dynamic and proceeded through an early intermediate chromatin structure where the nucleosome was repositioned in the adjacent linker DNA. Other nucleosomes bordering both sides of the break were also shifted away from the break; however, their loss was more gradual. These local changes preceded a broader loss of chromatin organization and nucleosome eviction that was marked by increased MNase sensitivity in the regions ∼8 kb on each side of the break. While the broad loss of chromatin organization was dependent on the end-processing complex, Mre11-Rad50-Xrs2 (MRX), the early remodeling and repositioning of the nucleosome adjacent to the break was independent of the MRX and YKU70/80 complexes. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population, where 5’ to 3’ end-resection of DSB ends is blocked. Concomitant with DSB repair, we observed the re-deposition and precise re-positioning of nucleosomes at the originally-occupied positions. This re-establishment of the pre-lesion chromatin landscape suggests that a DNA replication-independent mechanism exists in G1 cells to preserve epigenome organization following DSB repair.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3