Abstract
AbstractCRISPR technology has enabled large-scale cell lineage tracing for complex multicellular organisms by mutating synthetic genomic barcodes during organismal development. However, these sophisticated biological tools currently use ad-hoc and outmoded computational methods to reconstruct the cell lineage tree from the mutated barcodes. Because these methods are agnostic to the biological mechanism, they are unable to take full advantage of the data’s structure. We propose a statistical model for the mutation process and develop a procedure to estimate the tree topology, branch lengths, and mutation parameters by iteratively applying penalized maximum likelihood estimation. In contrast to existing techniques, our method estimates time along each branch, rather than number of mutation events, thus providing a detailed account of tissue-type differentiation. Via simulations, we demonstrate that our method is substantially more accurate than existing approaches. Our reconstructed trees also better recapitulate known aspects of zebrafish development and reproduce similar results across fish replicates.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献