Computational principles of neural adaptation for binaural signal integration

Author:

Oess TimoORCID,Ernst Marc O.,Neumann Heiko

Abstract

AbstractAdaptation to statistics of sensory inputs is an essential ability of neural systems and extends their effective operational range. Having a broad operational range facilitates to react to sensory inputs of different granularities, thus is a crucial factor for survival. The computation of auditory cues for spatial localization of sound sources, particularly the interaural level difference (ILD), has long been considered as a static process. Novel findings suggest that this process of ipsi- and contra-lateral signal integration is highly adaptive and depends strongly on recent stimulus statistics. Here, adaptation aids the encoding of auditory perceptual space of various granularities. To investigate the mechanism of auditory adaptation in binaural signal integration in detail, we developed a neural model architecture for simulating functions of lateral superior olive (LSO) and medial nucleus of the trapezoid body (MNTB) composed of single compartment conductance-based neurons. Neurons in the MNTB serve as an intermediate relay population. Their signal is integrated by the LSO population on a circuit level to represent excitatory and inhibitory interactions of input signals. The circuit incorporates an adaptation mechanism operating at the synaptic level based on local inhibitory feedback signals. The model’s predictive power is demonstrated in various simulations replicating physiological data. Incorporating the innovative adaptation mechanism facilitates a shift in neural responses towards the most effective stimulus range based on recent stimulus history. The model demonstrates that a single LSO neuron quickly adapts to these stimulus statistics and, thus, can encode an extended range of ILDs in the ipsilateral hemisphere. Most significantly, we provide a unique measurement of the adaptation efficacy of LSO neurons. Prerequisite of normal function is an accurate interaction of inhibitory and excitatory signals, a precise encoding of time and a well-tuned local feedback circuit. We suggest that the mechanisms of temporal competitive-cooperative interaction and the local feedback mechanism jointly sensitize the circuit to enable a response shift towards contra-lateral and ipsi-lateral stimuli, respectively.Author summaryWhy are we more precise in localizing a sound after hearing it several times? Adaptation to the statistics of a stimulus plays a crucial role in this.The present article investigates the abilities of a neural adaptation mechanism for improved localization skills based on a neural network model.Adaptation to stimulus statistics is very prominent in sensory systems of animals and allows them to respond to a wide range of stimuli, thus is a crucial factor for survival. For example, humans are able to navigate under suddenly changing illumination conditions (driving a car into and out of a tunnel). This is possible by courtesy of adaptation abilities of our sensory organs and pathways.Certainly, adaptation is not confined to a single sense like vision but also affects other senses like audition. Especially the perception of sound source location. Compared to vision, the localization of a sound source in the horizontal plane is a rather complicated task since the location cannot be read out from the receptor surface but needs to be computed. This requires the underlying neural system to calculate differences of the intensity between the two ears which provide a distinct cue for the location of a sound source. Here, adaptation to this cue allows to focus on a specific part of auditory space and thereby facilitates improved localisation abilities.Based on recent findings that suggest that the intensity difference computation is a flexible process with distinct adaptation mechanisms, we developed a neural model that computes the intensity difference to two incoming sound signals. The model comprises a novel mechanism for adaptation to sound source locations and provides a means to investigate underlying neural principles of adaptation and compare their effectivenesses. We demonstrate that due this mechanism the perceptual range is extended and a finer resolution of auditory space is obtained. Results explain the neural basis for adaptation and indicate that the interplay between different adaptation mechanisms facilitate highly precise sound source localization in a wide range of locations.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. How the barn owl locates prey by hearing;Annu Cornell Lab Ornithol,1962

2. The Hearing of the Barn Owl;Scientific American,1981

3. Some Experiments on the Recognition of Speech, with One and with Two Ears

4. A place theory of sound localization.

5. Precise inhibition is essential for microsecond interaural time difference coding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3