Author:
Yu Yong-Yao,Kong Wei-Guang,Yin Ya-Xing,Dong Fen,Huang Zhen-Yu,Yin Guang-Mei,Dong Shuai,Salinas Irene,Zhang Yong-An,Xu Zhen
Abstract
AbstractThe olfactory organ of vertebrates receives chemical cues present in the air or water and, at the same time, they are exposed to invading pathogens. Nasal-associated lymphoid tissue (NALT), which serves as a mucosal inductive site for humoral immune responses against antigen stimulation, is present in teleosts and mammals. IgT in teleosts is responsible for similar functions to those carried by IgA in mammals. Moreover, teleost NALT is known to contain B-cells and teleost nasal mucus contains immunoglobulins (Igs). Yet, whether nasal B cells and Igs respond to infection remains unknown. We hypothesized that water-borne parasites can invade the nasal cavity of fish and elicit local specific immune responses. To address this hypothesis, we developed a model of bath infection with the Ichthyophthirius multifiliis (Ich) parasite in rainbow trout, Oncorhynchus mykiss, an ancient bony fish, and investigated the nasal adaptive immune response against this parasite. Critically, we found that Ich parasites in water could be reach the nasal cavity and successfully invade the nasal mucosa. Moreover, strong parasite-specific IgT responses were exclusively detected in the nasal mucus, and the accumulation of IgT+ B-cells was noted in the nasal epidermis after Ich infection. Strikingly, local IgT+ B-cell proliferation and parasite-specific IgT generation were found in the trout olfactory organ, providing new evidence that nasal-specific immune responses were induced locally by a parasitic challenge. Overall, our findings suggest that nasal mucosal adaptive immune responses are similar to those reported in other fish mucosal sites and that an antibody system with a dedicated mucosal Ig performs evolutionary conserved functions across vertebrate mucosal surfaces.Author SummaryThe olfactory organ is a vitally important chemosensory organ in vertebrates but it is also continuously stimulated by pathogenic microorganisms in the external environment. In mammals and birds, nasopharynx-associated lymphoid tissue (NALT) is considered the first line of immune defense against inhaled antigens and in bony fish, protecting against water-borne infections. However, although B-cells and immunoglobulins (Igs) have been found in teleost NALT, the defensive mechanisms of parasite-specific immune responses after pathogen challenge in the olfactory organ of teleost fish remain poorly understood. Considering that the NALT of all vertebrates has been subjected to similar evolutionary forces, we hypothesize that mucosal Igs play a critical role in the defense of olfactory systems against parasites. To confirm this hypothesis, we show the local proliferation of IgT+ B-cells and production of pathogen-specific IgT within the nasal mucosa upon parasite infection, indicating that parasite-specific IgT is the main Ig isotype specialized for nasal-adaptive immune responses. From an evolutionary perspective, our findings contribute to expanding our view of nasal immune systems and determining the fate of the host–pathogen interaction.
Publisher
Cold Spring Harbor Laboratory