Abstract
AbstractMotivationApproximate String Matching is a pivotal problem in the field of computer science. It serves as an integral component for many string algorithms, most notably, DNA read mapping and alignment. The improved LV algorithm proposes an improved dynamic programming strategy over the banded Smith-Waterman algorithm but suffers from support of a limited selection of scoring schemes. In this paper, we propose the Leaping Toad problem, a generalization of the approximate string matching problem, as well as LEAP, a generalization of the Landau-Vishkin’s algorithm that solves the Leaping Toad problem under a broader selection of scoring schemes.ResultsWe benchmarked LEAP against 3 state-of-the-art approximate string matching implementations. We show that when using a bit-vectorized de Bruijn sequence based optimization, LEAP is up to 7.4x faster than the state-of-the-art bit-vector Levenshtein distance implementation and up to 32x faster than the state-of-the-art affine-gap-penalty parallel Needleman Wunsch Implementation.AvailabilityWe provide an implementation of LEAP in C++ at github.com/CMU-SAFARI/LEAP.Contacthxin@cmu.edu, calkan@cs.bilkent.edu.tr or onur.mutlu@inf.ethz.ch
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献