LRRK2-mediated phosphorylation of HDAC6 regulates HDAC6-cytoplasmic dynein interaction and aggresome formation

Author:

Lucas Richard M.,Bauer Claudia S.,Chinnaiya Kavitha,Schwartzentruber Aurélie,MacDonald Ruby,Collins Mark O.,Aasly Jan O.,Brønstad Gunnar,Ferraiuolo Laura,Mortiboys Heather,Vos Kurt J. DeORCID

Abstract

AbstractMutations in LRRK2 are the most common cause of dominantly inherited Parkinson’s disease (PD). A proportion of LRRK2 PD exhibits Lewy pathology with accumulations of α-synuclein and ubiquitin in intracellular aggregates that are indistinguishable from idiopathic PD. LRRK2 is a multi-domain protein with both GTPase and kinase activities that has been shown to affect various cellular processes including protein homeostasis, however how PD mutations in LRRK2 may lead to accumulation of ubiquitinated protein aggregates remains unclear.A main cellular pathway to remove aggregated ubiquitinated proteins is aggrephagy: the histone deacetylase HDAC6 recognizes ubiquitinated misfolded proteins and recruits them to the molecular motor cytoplasmic dynein which transports them to the perinuclear region where they are trapped in aggresomes that are subsequently removed by macroautophagy.Here we identified HDAC6 as a novel LRRK2 substrate and show that LRRK2 regulates HDAC6-dependent aggresome formation. LRRK2 directly interacted with the HDAC6 deacetylase domains via its Roc domain and phosphorylated HDAC6 on serine-22. Serine-22 phosphorylation of HDAC6 enhanced its interaction with cytoplasmic dynein and stimulated recruitment of ubiquitinated proteins to aggresomes. Knockdown or knockout of LRRK2 impaired HDAC6-mediated aggresome formation. PD mutant LRRK2 G2019S showed reduced interaction with HDAC6 and did not support aggresome formation to the same extend as wild type LRRK2. This was recapitulated in LRRK2 G2019S patient-derived iAstrocytes that showed an aggresome formation defect.In conclusion our data reveal HDAC6 as a target of LRRK2 and suggest that deregulation of HDAC6-mediated aggresome formation and aggrephagy could contribute to the pathology of PD.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3