Predicting the partition of behavioral variability in speed perception with naturalistic stimuli

Author:

Chin Benjamin M.,Burge JohannesORCID

Abstract

AbstractA core goal of visual neuroscience is to predict human perceptual performance from natural signals. Performance in any natural task can be impacted by at least three sources of uncertainty: stimulus variability, internal noise, and sub-optimal computations. Determining the relative importance of these factors has been a focus of interest for decades, but most successes have been achieved with simple tasks and simple stimuli. Drawing quantitative links directly from natural signals to perceptual performance has proven a substantial challenge. Here, we develop an image-computable (pixels in, estimates out) Bayesian ideal observer that makes optimal use of the statistics relating image movies to speed. The optimal computations bear striking resemblance to descriptive models proposed to account for neural activity in area MT. We develop a model based on the ideal, stimulate it with naturalistic signals, predict the behavioral signatures of each performance-limiting factor, and test the predictions in an interlocking series of speed discrimination experiments. The critical experiment collects human responses to repeated presentations of each unique image movie. The model, highly constrained by the earlier experiments, tightly predicts human response consistency without free parameters. This result implies that human observers use near-optimal computations to estimate speed, and that human performance is near-exclusively limited by natural stimulus variability and internal noise. The results demonstrate that human performance can be predicted from a task-specific statistical analysis of naturalistic stimuli, show that image-computable ideal observer analysis can be generalized from simple to natural stimuli, and encourage similar analyses in other domains.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3