Abstract
AbstractThe initiation of intracellular host cell colonization by symbiotic rhizobia in Medicago truncatula requires repolarization of root hairs, which includes the re-arrangement of cytoskeletal filaments. The molecular players governing microtubule (MT) re-organization during infection remain to be discovered. Here, we identified the M. truncatula DREPP protein and investigated its functions during rhizobial infections. We show that rhizobial colonization of drepp mutant roots as well as transgenic roots over-expressing DREPP is impaired. DREPP re-localizes into symbiosis-specific membrane nanodomains in a stimulus-dependent manner. This subcellular segregation coincides with DREPP-dependent MT fragmentation and a partial loss of the ability to re-organize the MT cytoskeleton in response to rhizobia, which might relay on an interaction between DREPP and MT organizing protein SPIRAL2 (SPR2). Taken together, our results reveal that establishment of symbiotic associations in M. truncatula require DREPP in order to regulate MT reorganization during initial root hair responses to rhizobia.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献