Soft Windowing Application to Improve Analysis of High-throughput Phenotyping Data

Author:

Haselimashhadi Hamed,Jeremy Mason C.,Munoz-Fuentes Violeta,López-Gómez Federico,Babalola Kolawole,Acar Elif F.,Kumar Vivek,White Jacqui,Flenniken Ann M.,King Ruairidh,Straiton Ewan,Seavitt John Richard,Gaspero Angelina,Garza Arturo,Christianson Audrey E.,Hsu Chih-Wei,Reynolds Corey L.,Lanza Denise G.,Lorenzo Isabel,Green Jennie R.,Gallegos Juan J.,Bohat Ritu,Samaco Rodney C.,Veeraragavan Surabi,Kim Jong Kyoung,Miller Gregor,Fuchs Helmut,Garrett Lillian,Becker Lore,Kang Yeon Kyung,Clary David,Cho Soo Young,Tamura Masaru,Tanaka Nobuhiko,Soo Kyung Dong,Bezginov Alexandr,About Ghina Bou,Champy Marie-France,Vasseur Laurent,Leblanc Sophie,Meziane Hamid,Selloum Mohammed,Reilly Patrick T.,Spielmann Nadine,Maier Holger,Gailus-Durner Valerie,Sorg Tania,Hiroshi Masuya,Yuichi Obata,Heaney Jason D.,Dickinson Mary E,Wolfgang Wurst,Tocchini-Valentini Glauco P.,Lloyd Kevin C. Kent,McKerlie Colin,Seong Je Kyung,Yann Herault,de Angelis Martin Hrabé,Brown Steve D.M.,Smedley Damian,Flicek Paul,Mallon Ann-Marie,Parkinson Helen,Meehan Terrence F.

Abstract

AbstractMotivationHigh-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximises analytic power while minimising noise from unspecified environmental factors.ResultsHere we introduce “soft windowing”, a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant p-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft windowed and non-windowed approaches, respectively, from a set of 2,082 mutant mouse lines. Our method is generalisable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources.Availability and ImplementationThe method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3