Lineage-dependent differences and the role of IFITM3 in the type-I interferon-induced restriction of Zika virus

Author:

Gobillot TheodoreORCID,Humes Daryl,Sharma Amit,Overbaugh Julie

Abstract

AbstractType-I interferon (IFN-I) is an important aspect of host innate antiviral response. Recent studies have shown that IFN-I can inhibit Zika virus (ZIKV) replication and that this is mediated in part by Interferon-induced transmembrane protein 3 (IFITM3). ZIKV infections in South America have led to severe congenital syndrome in a subset of infected infants. ZIKV was first identified in Africa, where there is limited evidence for the pathogenic effects associated with the American outbreak, which is fueled by infection with Asian-lineage strains, raising the possibility that the African and Asian ZIKV lineages have distinct pathogenic properties. Given the observation that IFN-I can inhibit ZIKV replication in cell culture, we asked whether ZIKV strains differed in their susceptibility to IFN-I. There was a range of susceptibilities to IFN-I inhibition across virus strains. Virus production in A549 cells was reduced from 3-42-fold for IFNα and 63-807-fold for IFNβ across a panel of nine viruses, five from the African-lineage and four from the Asian-lineage. African-lineage ZIKV strains were more resistant to IFN-I than Asian-lineage strains, but this difference was only significant for IFNα-mediated restriction (p = 0.049). Notably, over-expression of IFITM3 at similar levels induced by IFN-I did not significantly restrict either a prototype African lineage (MR 766) or Asian lineage (PRVABC59) isolate. Moreover, knocking out IFITM3 expression did not result in a significant increase in viral replication or a diminishment of the inhibition by IFN-I. Overall, our findings show that while diverse ZIKV strains are susceptible to the antiviral effects of IFN-I, African-lineage strains are more resistant to IFNα. In addition, the majority of the IFN-I-induced inhibition of ZIKV strains cannot be explained by IFITM3, suggesting that other unknown ISGs may be the driving force of the type I IFN response against ZIKV.Author summaryThe innate immune system, and specifically the type-I interferon response, is a critical component of the host response against viral infections. The recent unprecedented spread and severe pathogenic features of Zika virus in the Americas have led to significant interest in characterizing features of Zika virus strains that have fueled the American outbreak. Zika virus was first identified in Africa, where there is limited evidence for the pathogenic effects associated with the American outbreak. Here, we demonstrate that African-lineage Zika virus strains are significantly more resistant to the effects of type-I interferon, and that type-I interferon-mediated restriction of Zika virus strains is not explained by the host factor Interferon-induced transmembrane protein 3. This improved understanding of Zika virus-host interactions may explain certain pathogenic features of Asian-lineage Zika virus strains that have fueled the American Zika virus epidemic, and supports the search for as-yet-unidentified actors in the interferon response against Zika virus.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3