SETD3 protein is the actin-specific histidine N-methyltransferase

Author:

Kwiatkowski Sebastian,Seliga Agnieszka K.,Veiga-da-Cunha Maria,Vertommen Didier,Terreri Marianna,Ishikawa Takao,Grabowska Iwona,Jagielski Adam K,Drozak Jakub

Abstract

AbstractProtein histidine methylation is rarely studied posttranslational modification of unknown biochemical importance. In vertebrates, only a few methylhistidne-containing proteins have been reported so far, including β-actin as an essential example. The evolutionary conserved methylation of β-actin H73 residue is catalyzed by a specific histidine N-methyltransferase that has never been identified molecularly. In the present investigation, we have purified actin-specific histidine N-methyltransferase from rat muscles about 1200-fold. Its activity was studied by the radiochemical assay employing either homogeneous recombinant human β-actin produced in E. coli or its mutated form exhibiting substitution of H73 by Ala residue (H73A) as substrates. Three polypeptides of ≈65, 75 and 90 kDa coeluting with the enzyme activity were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in the identification of SETD3 methyltransferase as the only plausible candidate. Rat SETD3 and its human ortholog were expressed in COS-7 cells, purified to homogeneity and shown to catalyze methylation of β-actin at H73 residue as confirmed by mass spectrometry analysis. The SETD3 enzyme was active towards a synthetic peptide corresponding to residues 69-77 of β-actin, but not to its mutated form exhibiting His-to-Ala substitution. Finally, Setd3-deficient HAP1 cells were devoid of methylated H73 in β-actin and exhibited phenotypic changes, including a decrease in F-actin content and an increased glycolytic activity. We conclude that SETD3 is the actin-specific histidine N-methyltransferase. The data show for the first time the molecular identity of protein histidine N-methyltransferase in vertebrates and throw new light on the substrate specificity of SET-domain-containing enzymes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3