Photoactivation of olfactory sensory neurons does not affect action potential conduction in individual trigeminal sensory axons innervating the rodent nasal cavity

Author:

Maurer Margot,Papotto Nunzia,Sertel-Nakajima Julika,Schueler Markus,Möhrlen Frank,Messlinger Karl,Col Roberto De,Frings Stephan,Carr Richard WORCID

Abstract

AbstractOlfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization. While imaging studies indicate overlap in limbic and cortical somatosensory areas activated by nasal trigeminal and olfactory stimuli, there is also potential cross-talk at the level of the olfactory epithelium, the olfactory bulb and trigeminal brainstem. Here we focused on potential interactions between olfactory and trigeminal signaling in the nasal cavity. We first used a forced choice paradigm to ascertain whether trigeminal and olfactory stimuli could influence behavior in mice. Mice avoided water sources associated with volatile TRPV1 and TRPA1 irritants, however, this aversion was mitigated when combined with a pure odorant (rose fragrance, phenylethyl alcohol, PEA). To determine whether olfactory-trigeminal interactions within the nose could potentially account for this behavioral effect we recorded from single trigeminal sensory axons innervating the nasal epithelium using an isolated in vitro preparation. To circumvent non-specific effects of chemical stimuli, optical stimulation was used to excite olfactory sensory neurons in a mouse line expressing channel-rhodopsin under the olfactory marker protein. During photoactivation of olfactory sensory neurons there was no modulation of action potential conduction in individual trigeminal axons. Similarly, no evidence was found for trigeminal axon collateral branching that might serve as a conduit for cross-talk between the olfactory epithelium and olfactory dura mater. Using direct assessment of trigeminal signals emanating from the mouse nasal cavity we see no evidence for paracrine nor axon reflex mediated cross-talk between olfactory and trigeminal sensory systems in the nasal cavity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3