The structure ofMycobacterium tuberculosisheme-degrading protein, MhuD, in complex with product

Author:

Chao AlexORCID,Burley Kalistyn H.ORCID,Sieminski Paul J.ORCID,Mobley David L.ORCID,Goulding Celia W.ORCID

Abstract

AbstractMycobacterium tuberculosis(Mtb), the causative agent of tuberculosis, requires iron for survival. In Mtb, MhuD is the cytosolic protein that degrades imported heme. MhuD is distinct, both in sequence and structure, from canonical heme oxygenases (HOs) but homologous with IsdG-type proteins. Canonical HO is found mainly in eukaryotes, while IsdG-type proteins are predominantly found in prokaryotes including pathogens. While there are several published structures of MhuD and other IsdG-type proteins in complex with heme substrate, no structures have been reported of IsdG-type proteins in complex with product, unlike HOs. We recently showed that the Mtb variant MhuD-R26S produces biliverdin IXα (αBV) rather than the wild-type (WT) mycobilin isomers as product. Given that mycobilin and other IsdG-type protein products like staphylobilin are difficult to isolate in quantities sufficient for structure determination, here we use the MhuD-R26S variant and its product αBV as a proxy to study the IsdG-type protein/product complex. First we show that αBV has nanomolar affinity for MhuD and the R26S variant. Second we determined the MhuD-R26S-αBV complex structure to 2.5 Å, which reveals two notable features (1) two αBV molecules bound per active site and (2) a new α-helix (α3) as compared with the MhuD-heme structure. Finally, by molecular dynamics simulations we show that α3 is stable with the proximal αBV alone. MhuD’s high affinity for its product and structural and electrostatic changes that accompany substrate turnover suggest that there is an unidentified protein that is responsible for product extraction from MhuD and other IsdG-type proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3