Automating parameter selection to avoid implausible biological pathway models

Author:

Magnano Chris S.ORCID,Gitter AnthonyORCID

Abstract

AbstractA common way to integrate and analyze large amounts of biological “omic” data is through pathway reconstruction: using condition-specific omic data to create a subnetwork of a generic background network that represents some process or cellular state. A challenge in pathway reconstruction is that adjusting pathway reconstruction algorithms’ parameters produces pathways with drastically different topological properties and biological interpretations. Due to the exploratory nature of pathway reconstruction, there is no ground truth for direct evaluation, so parameter tuning methods typically used in statistics and machine learning are inapplicable. We developed the pathway parameter advising algorithm to tune pathway reconstruction algorithms to minimize biologically implausible predictions. We leverage background knowledge in pathway databases to select pathways whose high-level structure resembles that of manually curated biological pathways. At the core of this method is a graphlet decomposition metric, which measures topological similarity to curated biological pathways. In order to evaluate pathway parameter advising, we compare its performance in avoiding implausible networks and reconstructing pathways from the NetPath database with other parameter selection methods across four pathway reconstruction algorithms. We also demonstrate how pathway parameter advising can guide construction of an influenza host factor network. Pathway parameter advising is method-agnostic; it is applicable to any pathway reconstruction algorithm with tunable parameters. Our pathway parameter advising software is available on GitHub at https://github.com/gitter-lab/pathway-parameter-advising and PyPI at https://pypi.org/project/pathwayParameterAdvising/.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Ahmed, N. K. , Neville, J. , Rossi, R. A. and Duffield, N. (2015). Efficient graphlet counting for large networks. In 2015 IEEE International Conference on Data Mining, pages 1–10.

2. Akaike, H. (1998). A New Look at the Statistical Model Identification. In E. Parzen , K. Tanabe , and G. Kitagawa , editors, Selected Papers of Hirotugu Akaike, Springer Series in Statistics, pages 215–222. Springer New York, New York, NY.

3. Computationally efficient measure of topological redundancy of biological and social networks;Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2011

4. Finding undetected protein associations in cell signaling by belief propagation

5. Network biology: understanding the cell's functional organization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3