Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation

Author:

Yang Qizong,Antonov Igor,Castillejos David,Nagaraj Anagha,Bostwick Caleb,Kohn Andrea,Moroz Leonid L.,Hawkins Robert D.

Abstract

Long-term but not short-term memory and synaptic plasticity in many brain areas require neurotrophin signaling, transcription, and epigenetic mechanisms including DNA methylation. However, it has been difficult to relate these cellular mechanisms directly to behavior because of the immense complexity of the mammalian brain. To address that problem, we and others have examined numerically simpler systems such as the hermaphroditic marine mollusk Aplysia californica. As a further simplification, we have used a semi-intact preparation of the Aplysia siphon withdrawal reflex in which it is possible to relate cellular plasticity directly to behavioral learning. We find that inhibitors of neurotrophin signaling, transcription, and DNA methylation block sensitization and classical conditioning beginning ∼1 h after the start of training, which is in the time range of an intermediate-term stage of plasticity that combines elements of short- and long-term plasticity and may form a bridge between them. Injection of decitabine (an inhibitor of DNA methylation that may have other actions in these experiments) into an LE sensory neuron blocks the neural correlates of conditioning in the same time range. In addition, we found that both DNA and RNA methylation in the abdominal ganglion are correlated with learning in the same preparations. These results begin to suggest the functions and integration of these different molecular mechanisms during behavioral learning.

Funder

NIH

NSF

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3