The Genomic Stability at the Coding Regions of the Multidrug Transporter Gene ABCB1: Insights into the Development of Alternative Drug Resistance Mechanisms in Human Leukemia Cells

Author:

Chen Kevin G.,Duran George E.,Mogul Mark J.,Wang Yan C.,Ross Kevin L.,Jaffrézou Jean-Pierre,Huff Lyn M.,Fojo Tito,Lacayo Norman J.,Sikic Branimir I.

Abstract

ABSTRACTDespite considerable efforts in reversing clinical multidrug resistance (MDR), targeting the predominant multidrug transporter ABCB1/P-glycoprotein (P-gp) based on small molecule inhibitors has been hindered. This may be due to the emergence of alternative drug resistance mechanisms. However, the non-specific P-gp inhibitor cyclosporine (CsA) showed significant clinical benefits in patients with acute myeloid leukemia (AML), which likely represents the only proof-of-principle clinical trial using several generations of MDR inhibitors. Nevertheless, the mechanisms that underlie this successful MDR modulation by CsA are not elucidated because of the absence of CsA-relevant cellular models. In this study, we report the development of two erythroleukemia variants, RVC and RDC, which were derived by step-wise co-selection of K562/R7 drug-resistant leukemia cells with the etoposide-CsA and doxorubicin-CsA drug combinations, respectively. Interestingly, both RVC and RDC, which retained P-gp expression, showed altered MDR phenotypes that were resistant to cyclosporine modulation. The ABCB1 coding regions were genetically stable even under long-term stringent drug selection. Genomically, ABCB1 is likely the most stable ABC transporter gene when comparing with several ABC superfamily members (such as ABCA1, ABCC1, CFTR, and ABCG2). Our findings suggested that non-P-gp mechanisms were likely responsible for the resistance to CsA modulation in both RVC and RDC cells. Moreover, we found that CsA played a role in undermining the selection of highly drug-resistant cells via induction of low level and unstable drug resistance, thus shedding some light on the benefits of CsA in treating certain types of AML patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3