Analysis of continuous infusion functional PET (fPET) in the human brain

Author:

Li ShenpengORCID,Jamadar Sharna D.ORCID,Ward Phillip G.D.ORCID,Premaratne MalinORCID,Egan Gary F.ORCID,Chen ZhaolinORCID

Abstract

AbstractFunctional positron emission tomography (fPET) is a neuroimaging method involving continuous infusion of 18-F-fluorodeoxyglucose (FDG) radiotracer during the course of the PET examination. Compared with the conventional bolus administered static FDG PET which provides only a snapshot of the averaged glucose uptake into the brain in a limited dynamic time window, fPET offers a significantly wider time window to study the dynamics of glucose uptake. Several earlier studies have applied fPET to investigate brain FDG uptake and study its relationship with functional magnetic resonance imaging (fMRI). However, due to the unique characteristics of fPET signals, modelling of the fPET signal is a complex task and poses challenges for accurate interpretation of the results. This study applies independent component analysis (ICA) to analyze resting state fPET data, and to compare the performance of ICA and general linear modelling (GLM) for estimation of brain activation in response to tasks. The fPET signal characteristics were compared using GLM and ICA methods to model the fPET visual activation data. Our aim was to evaluate GLM and ICA methods for analyzing task fPET datasets and present ICA method in the analysis of resting state fPET datasets. Using both simulation and in-vivo experimental datasets, we show that both methods can successfully identify task related brain activation. We report fPET metabolic resting state brain networks analyzed using the fPET ICA method in a cohort of healthy subjects. Functional PET provides a unique method to map dynamic changes of glucose uptake in the resting human brain and in response to extrinsic stimulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3