Cbsoverdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically withDyrk1a

Author:

Marechal Damien,Brault Véronique,Leon Alice,Martin Dehren,Pereira Patricia Lopes,Loaёc Nadege,Birling Marie-Christine,Friocourt Gaelle,Blondel Marc,Herault Yann

Abstract

ABSTRACTIdentifying dosage sensitive genes is a key to understand the mechanisms underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS mouse model (Dp1Yah) show cognitive phenotype and needs to be investigated to identify the main genetic driver. Here, we report that, in the Dp1Yah mice, 3 copies of the Cystathionine-beta-synthase gene (Cbs)are necessary to observe a deficit in the novel object recognition (NOR) paradigm. Moreover, the overexpression ofCbsalone is sufficient to induce NOR deficit. Accordingly targeting the overexpression of human CBS, specifically in Camk2a-expressing neurons, leads to impaired objects discrimination. Altogether this shows thatCbsoverdosage is involved in DS learning and memory phenotypes. In order to go further, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast. Pharmacological intervention in the Tg(CBS) with one selected compound restored memory in the novel object recognition. In addition, using a genetic approach, we demonstrated an epistatic interaction betweenCbsandDyrk1a, another human chromosome 21 gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1a and an already known target for DS therapeutic intervention. Further analysis using proteomic approaches highlighted several pathways, including synaptic transmission, cell projection morphogenesis, and actin cytoskeleton, that are affected by DYRK1A and CBS overexpression. Overall we demonstrated that CBS overdosage underpins the DS-related recognition memory deficit and that bothCBSandDYRK1Ainteract to control accurate memory processes in DS. In addition, our study establishes CBS as an intervention point for treating intellectual deficiencies linked to DS.SIGNIFICANT STATEMENTHere, we investigated a region homologous to Hsa21 and located on mouse chromosome 17. We demonstrated using three independent genetic approaches that the overdosage of the Cystathionine-beta-synthase gene (Cbs) gene, encoded in the segment, is necessary and sufficient to induce deficit in novel object recognition (NR).In addition, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast and in mouse transgenic lines. Then we analyzed the relation between Cbs overdosage and the consequence of DYRK1a overexpression, a main driver of another region homologous to Hsa21 and we demonstrated that an epistatic interaction exist betweenCbsandDyrk1aaffecting different pathways, including synaptic transmission, cell projection morphogenesis, and actin cytoskeleton.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3