Dissociable effects of visual crowding on the perception of colour and motion

Author:

Greenwood John A.ORCID,Parsons Michael J.

Abstract

AbstractOur ability to recognise objects in peripheral vision is fundamentally limited by crowding, the deleterious effect of clutter that disrupts the recognition of features ranging from orientation and colour to motion and depth. Prior research is equivocal on whether this reflects a singular process that disrupts all features simultaneously or multiple processes that affect each independently. We examined crowding for motion and colour, two features that allow a strong test of feature independence. ‘Cowhide’ stimuli were presented 15 degrees in peripheral vision, either in isolation or surrounded by flankers to give crowding. Observers reported either the target direction (clockwise/counterclockwise from upwards) or its hue (blue/purple). We first established that both features show systematic crowded errors (predominantly biased towards the flanker identities) and selectivity for target-flanker similarity (with reduced crowding for dissimilar target/flanker elements). The multiplicity of crowding was then tested with observers identifying both features: a singular object-selective mechanism predicts that when crowding is weak for one feature and strong for the other that crowding should be all-or-none for both. In contrast, when crowding was weak for colour and strong for motion, errors were reduced for colour but remained for motion, and vice versa with weak motion and strong colour crowding. This double dissociation reveals that crowding disrupts certain combinations of visual features in a feature-specific manner, ruling out a singular object-selective mechanism. The ability to recognise one aspect of a cluttered scene, like colour, thus offers no guarantees for the correct recognition of other aspects, like motion.Significance statementOur peripheral vision is primarily limited by crowding, the disruption to object recognition that arises in clutter. Crowding is widely assumed to be a singular process, affecting all of the features (orientation, motion, colour, etc.) within an object simultaneously. In contrast, we observe a double dissociation whereby observers make errors regarding the colour of a crowded object whilst correctly judging its direction, and vice versa. This dissociation can be reproduced by a population-coding model where the direction and hue of target/flanker elements are pooled independently. The selective disruption of some object features independently of others rules out a singular crowding mechanism, posing problems for high-level crowding theories, and suggesting that the underlying mechanisms may be distributed throughout the visual system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3