Myco- and photobiont associations in crustose lichens in the McMurdo Dry Valleys (Antarctica) reveal high differentiation along an elevational gradient

Author:

Wagner Monika,Bathke Arne C.,Cary Craig,Junker Robert R.,Trutschnig Wolfgang,Ruprecht UlrikeORCID

Abstract

AbstractThe climate conditions of the McMurdo Dry Valleys (78° S) are characterized by low temperatures and low precipitation. The annual temperatures at the valley bottoms have a mean range from −30 °C to −15 °C and decrease with elevation. Precipitation occurs mostly in form of snow (3-50 mm a−1water equivalent) and, liquid water is rare across much of the landscape for most of the year and represents the primary limitation to biological activity. Snow delivered off the polar plateau by drainage winds, dew and humidity provided by clouds and fog are important water sources for rock inhibiting crustose lichens. In addition, the combination of the extremely low humidity and drying caused by foehn winds, confined to lower areas of the valleys, with colder and moister air at higher altitudes creates a strongly improving water availability gradient with elevation.We investigated the diversity and interaction specificity of myco-/photobiont associations of a total of 232 crustose lichen specimens, collected along an elevational gradient (171-959 m a.s.l.) within the McMurdo Dry Valleys with regard to the spatial distribution caused by climatological and geographical factors. For the identification of the mycobiont and photobiont species three markers each were amplified (nrITS, mtSSU, RPB1 and nrITS, psbJ-L, COX2, respectivley). Elevation, associated with a water availability gradient, turned out to be the key factor explaining most of the distribution patterns of the mycobionts. Pairwise comparisons showedLecidea cancriformisandRhizoplaca macleaniito be significantly more common at higher, andCarbonea vorticosaandLecidea polypycnidophoraat lower, elevations. Lichen photobionts were dominated by the globally distributedTrebouxiaOTU,Tr_A02 which occurred at all habitats. Network specialization resulting from mycobiont-photobiont bipartite network structure varied with elevation and associated abiotic factors.Along an elevational gradient, the spatial distribution, diversity and genetic variability of the lichen symbionts appear to be mainly influenced by improved water relations at higher altitudes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3