Universal nature of collapsibility in the context of protein folding and evolution

Author:

Thirumalai D.,Samanta Himadri S.,Maity Hiranmay,Reddy Govardhan

Abstract

AbstractTheory and simulations predicted sometime ago that the sizes of unfolded states of globular proteins should decrease continuously as the denaturant concentration is shifted from a high to a low value. However, small angle X-ray scattering (SAXS) data were used to assert the opposite, while interpretation of single molecule Forster resonance energy transfer experiments (FRET) supported the theoretical predictions. The disagreement between the two experiments is the SAXS-FRET controversy. By harnessing recent advances in SAXS and FRET experiments and setting these findings in the context of a general theory and simulations, we establish that compaction of unfolded states is universal. The theory also predicts that proteins rich in β-sheets are more collapsible than α-helical proteins. Because the extent of compaction is small, experiments have to be accurate and their interpretations should be as model free as possible. Theory also suggests that collapsibility itself could be a physical restriction on the evolution of foldable sequences, and provides a physical basis for the origin of multi-domain proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polypeptide collapse modulation and folding stimulation by GroEL-ES;2020-06-19

2. Dodine as a Kosmo-Chaotropic Agent;The Journal of Physical Chemistry Letters;2019-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3