Short exon prediction based on multiscale products of a genomic-inspired multiscale bilateral filtering

Author:

Zhang Xiaolei,Pan Weijun

Abstract

ABSTRACTMultiscale signal processing techniques such as wavelet filtering have proved to be particularly successful in predicting exon sequences. Traditional wavelet predictor is domain filtering, and enforces exon features by weighting nucleotide values with coefficients. Such a measure performs linear filtering and is not suitable for preserving the short coding exons and the exon-intron boundaries. This paper describes a short exon prediction framework that is capable of non-linearly processing DNA sequences while achieving high prediction rates. There are two key contributions. The first is the introduction of a genomic-inspired multiscale bilateral filtering (MSBF) which exploits both weighting coefficients in the spatial domain and nucleotide similarity in the range. Similarly to wavelet transform, the MSBF is also defined as a weighted sum of nucleotides. The difference is that the MSBF takes into account the variation of nucleotides at a specific codon position. The second contribution is the exploitation of inter-scale correlation in MSBF domain to find the inter-scale dependency on the differences between the exon signal and the background noise. This favourite property is used to sharp the important structures while weakening noise. Three benchmark data sets have been used in the evaluation of considered methods. By comparison with two existing techniques, the prediction results demonstrate that: the proposed method reveals at least improvement of 50.5%, 36.7%, 12.8%, 17.8%, 17.7%, 11.5% and 12.2% on the exons length of 1-49, 50-74, 75-99, 100-124, 125-149, 150-174 and 175-199, respectively. The MSBF of its nonlinear nature is good at energy compaction, which makes it capable of locating the sharp variations around short exons. The direct scale multiplication of coefficients at several adjacent scales obviously enhanced exon features while the noise contents were suppressed. We show that the non-linear nature and correlation-based property achieved in proposed predictor is greater than that for traditional filtering, which leads to better exon prediction performance. There are some possible applications of this predictor. Its good localization and protection of sharp variations will make the predictor be suitable to perform fault diagnosis of aero-engine.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Classification of short human exons and introns based on statistical features;Phys Rev E,2003

2. In search of the small ones: improved prediction of short exons in vertebrates, plants, fungi and protists

3. Studies of spectral properties of short genes using the wavelet subspace Hilbert–Huang transform (WSHHT);Physica A: Statistical Mechanics and its Applications,2008

4. Segmentation of short human exons based on spectral features of double curves;Int J Data Min Bioinform,2008

5. Short Exon Detection via Wavelet Transform Modulus Maxima;PLoS One,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3