Detecting Epistasis with the Marginal Epistasis Test in Genetic Mapping Studies of Quantitative Traits

Author:

Crawford LorinORCID,Zeng Ping,Mukherjee SayanORCID,Zhou Xiang

Abstract

AbstractEpistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects — the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium.Author SummaryEpistasis is an important genetic component that underlies phenotypic variation and is also a key mechanism that accounts for missing heritability. Identifying epistatic interactions in genetic association studies can help us better understand the genetic architecture of complex traits and diseases. However, the ability to identify epistatic interactions in practice faces important statistical and computational challenges. Standard statistical methods scan through all-pairs (or all high-orders) of interactions, and the large number of interaction combinations results in slow computation time and low statistical power. We propose an alternative mapping strategy and a new variance component method for identifying epistasis. Our method examines one variant at a time, and estimates and tests its marginal epistatic effect — the combined pairwise interaction effects between a given variant and all other variants. By testing for marginal epistatic effects, we can identify variants that are involved in epistasis without the need of explicitly searching for interactions. Our method also relies on a recently developed variance component estimation method for efficient and robust parameter inference, and accurate p-value computation. We illustrate the benefits of our method using simulations and real data applications.

Publisher

Cold Spring Harbor Laboratory

Reference106 articles.

1. Five Years of GWAS Discovery

2. Understanding mechanisms underlying human gene expression variation with RNA sequencing

3. Battle A , Mostafavi S , Zhu X , Potash JB , Weissman MM , McCormick C , et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Research. 2013 10;Available from: http://genome.cshlp.org/content/early/2013/10/02/gr.155192.113.abstract.

4. Transcriptome and genome sequencing uncovers functional variation in humans

5. The genetic architecture of gene expression levels in wild baboons

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3