Identification and characterization of zebrafish Tlr4 co-receptor Md-2

Author:

Loes Andrea N.,Hinman Melissa N.,Farnsworth Dylan R.,Miller Adam C.,Guillemin Karen,Harms Michael J.ORCID

Abstract

ABSTRACTThe zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS-sensing. In amniotes, the protein complex formed by Toll-like receptor 4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule lipopolysaccharide (LPS) and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4: Md-2 has not been identified outside of amniotes, while the zebrafishtlr4genes appear to be paralogs, not orthologs, of amnioteTLR4s. We revisited these conclusions. We identified a zebrafish gene encoding Md-2,ly96. Using single-cell RNA-Seq, we found thatly96is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafishtlr4-like genes. Unlike amnioteLY96, zebrafishly96expression is restricted to a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4a form a complex that activates NF-κB signaling in response to LPS, butly96loss-of-function mutations gave little protection against LPS-toxicity in larval zebrafish. Finally, by analyzing the genomic context oftlr4genes in eleven jawed vertebrates, we found thattlr4arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than ade novoinvention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS-responsiveness to a specific subset of innate immune cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3