Global characterization of copy number variants in epilepsy patients from whole genome sequencing

Author:

Monlong Jean,Girard Simon L.,Meloche Caroline,Cadieux-Dion Maxime,Andrade Danielle M.,Lafreniere Ron G.,Gravel Micheline,Spiegelman Dan,Dionne-Laporte Alexandre,Boelman Cyrus,Hamdan Fadi F.,Michaud Jacques L.,Rouleau Guy,Minassian Berge A.,Bourque Guillaume,Cossette Patrick

Abstract

AbstractEpilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy number variants (CNVs) studies of epilepsy have used array-based technology and were restricted to the detection of large or exonic events. In contrast, whole-genome sequencing (WGS) has the potential to more comprehensively profile CNVs but existing analytic methods suffer from limited accuracy. We show that this is in part due to the non-uniformity of read coverage, even after intra-sample normalization. To improve on this, we developed PopSV, an algorithm that uses multiple samples to control for technical variation and enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehensive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For both large and small variants, we found an enrichment of rare exonic events in epilepsy patients, especially in genes with predicted loss-of-function intolerance. Notably, this genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously known epilepsy genes. This enrichment was strongest for non-coding CNVs located within 100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 potentially damaging events that could be associated with known or new candidate epilepsy genes. Our results suggest that comprehensive sequence-based profiling of CNVs could help explain a larger fraction of epilepsy cases.Author summaryEpilepsy is a common neurological disorder affecting around 3% of the population. In some cases, epilepsy is caused by brain trauma or other brain anomalies but there are often no clear causes. Genetic factors have been associated with epilepsy in the past such as rare genetic variations found by linkage studies as well as common genetic variations found by genome-wide association studies and large copy-number variants. We sequenced the genome of 200 epilepsy patients and 300 healthy controls and compared the distribution of deletion (loss of a copy) and duplication (additional copy) of genomic regions. Thanks to the sequencing technology and a new method that takes advantage of the large sample size, we could compare the distribution of small copy- number variants between epilepsy patients and controls. Overall, we found that small variants are also associated with epilepsy. Indeed, the genome of epilepsy patients had more exonic copy- number variants, especially when rare or affecting genes with predicted loss-of-function intolerance. Focusing on regions around genes that have been previously associated with epilepsy, we also found more non-coding variants in epilepsy patients, especially deletions or variants in regulatory regions. Finally, we provide a list of 21 regions in which we found likely pathogenic variants.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3