Detecting differential growth of microbial populations with Gaussian process regression

Author:

Tonner Peter D,Darnell Cynthia L,Engelhardt Barbara E,Schmid Amy K

Abstract

AbstractMicrobial growth curves are used to study differential effects of media, genetics, and stress on microbial population growth. Consequently, many modeling frameworks exist to capture microbial population growth measurements. However, current models are designed to quantify growth under conditions that produce a specific functional form. Extensions to these models are required to quantify the effects of perturbations, which often exhibit non-standard growth curves. Rather than fix expected functional forms of different experimental perturbations, we developed a general and robust model of microbial population growth curves using Gaussian process (GP) regression. GP regression modeling of high resolution time-series growth data enables accurate quantification of population growth, and can be extended to identify differential growth phenotypes due to genetic background or stress. Additionally, confounding effects due to experimental variation can be controlled explicitly. Our framework substantially outperforms commonly used microbial population growth models, particularly when modeling growth data from environmentally stressed populations. We apply the GP growth model to a collection of growth measurements for seven transcription factor knockout strains of a model archaeal organism,Halobacterium salinarum. Using these models fitted to growth data, two statistical tests were developed to quantify the differential effects of genetic and environmental perturbations on microbial growth. These statistical tests accurately identify known regulators and implicate novel regulators of growth under standard and stress conditions. Furthermore, the fitted GP regression models are interpretable, recapitulating biological knowledge of growth response while providing new insights into the relevant parameters affecting microbial population growth.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. Mathematics of predictive food microbiology

2. On Models of the Temperature Effect on the Rate of Chemical Reactions and Biological Processes in Foods;Food Engineering Reviews,2012

3. Gaussian Processes for Bayesian hypothesis tests on regression functions;In Conference on Artificial Intelligence and Statistics,2015

4. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1;Genome Biology,2004

5. A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3