The Genomic Region Encompassing the Nephropathic Cystinosis Gene (CTNS): Complete Sequencing of a 200-kb Segment and Discovery of a Novel Gene within the Common Cystinosis-Causing Deletion

Author:

Touchman Jeffrey W.,Anikster Yair,Dietrich Nicole L.,Maduro Valerie V. Braden,McDowell Geraldine,Shotelersuk Vorasuk,Bouffard Gerard G.,Beckstrom-Sternberg Stephen M.,Gahl William A.,Green Eric D.

Abstract

Nephropathic cystinosis is an autosomal recessive disorder caused by the defective transport of cystine out of lysosomes. Recently, the causative gene (CTNS) was identified and presumed to encode an integral membrane protein called cystinosin. Many of the disease-associated mutations in CTNS are deletions, including one >55 kb in size that represents the most common cystinosis allele encountered to date. In an effort to determine the precise genomic organization of CTNS and to gain sequence-based insight about the DNA within and flanking cystinosis-associated deletions, we mapped and sequenced the region of human chromosome 17p13 encompassingCTNS. Specifically, a bacterial artificial chromosome (BAC)-based physical map spanning CTNS was constructed by sequence-tagged site (STS)-content mapping. The resulting BAC contig provided the relative order of 43 STSs. Two overlapping BACs, which together contain all of the CTNS exons as well as extensive amounts of flanking DNA, were selected and subjected to shotgun sequencing. A total of 200,237 bp of contiguous, high-accuracy sequence was generated. Analysis of the resulting data revealed a number of interesting features about this genomic region, including the long-range organization of CTNS, insight about the breakpoints and intervening DNA associated with the common cystinosis-causing deletion, and structural information about five genes neighboringCTNS (human ortholog of rat vanilloid receptor subtype 1 gene,CARKL, TIP-1, P2X5, and HUMINAE). In particular, sequence analysis detected the presence of a novel gene (CARKL) residing within the most common cystinosis-causing deletion. This gene encodes a previously unknown protein that is predicted to function as a carbohydrate kinase. Interestingly, bothCTNS and CARKL are absent in nearly half of all cystinosis patients (i.e., those homozygous for the common deletion).[The sequence data described in this paper have been submitted to the GenBank data library under accession nos.AF168787 and AF163573.]

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference47 articles.

1. Identification and Detection of the Common 65-kb Deletion Breakpoint in the Nephropathic Cystinosis Gene (CTNS)

2. GenBank

3. Birren B. Mancino V. Shizuya H. (1999) Bacterial artificial chromosomes. in Genome Analysis Vol. 3, Cloning systems, ed Birren B. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), pp 241–295.

4. Prediction of complete gene structures in human genomic DNA

5. The capsaicin receptor: a heat-activated ion channel in the pain pathway

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3