Estimation of Rearrangement Break Rates Across the Genome

Author:

Hann-Soden Christopher,Holmes Ian,Taylor John W.

Abstract

AbstractGenomic rearrangements provide an important source of novel functions by recombining genes and motifs throughout and between genomes. However, understanding how rearrangement functions to shape genomes is hard because reconstructing rearrangements is a combinatoric problem which often has many solutions. In lieu of reconstructing the history of rearrangements, we answer the question of where rearrangements are occurring in the genome by remaining agnostic to the types of rearrangement and solving the simpler problem of estimating the rate at which double-strand breaks occur at every site in a genome. We phrase this problem in graph theoretic terms and find that it is a special case of the minimum cover problem for an interval graph. We employ and modify existing algorithms for efficiently solving this problem. We implement this method as a Python program, named BRAG, and use it to estimate the break rates in the genome of the model Ascomycete mold,Neurospora crassa. We find evidence that rearrangements are more common in the subtelomeric regions of the chromosomes, which facilitates the evolution of novel genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3