Optimization and uncertainty analysis of ODE models using 2nd order adjoint sensitivity analysis

Author:

Stapor Paul,Fröhlich Fabian,Hasenauer Jan

Abstract

AbstractMotivationParameter estimation methods for ordinary differential equation (ODE) models of biological processes can exploit gradients and Hessians of objective functions to achieve convergence and computational efficiency. However, the computational complexity of established methods to evaluate the Hessian scales linearly with the number of state variables and quadratically with the number of parameters. This limits their application to low-dimensional problems.ResultsWe introduce second order adjoint sensitivity analysis for the computation of Hessians and a hybrid optimization-integration based approach for profile likelihood computation. Second order adjoint sensitivity analysis scales linearly with the number of parameters and state variables. The Hessians are effectively exploited by the proposed profile likelihood computation approach. We evaluate our approaches on published biological models with real measurement data. Our study reveals an improved computational efficiency and robustness of optimization compared to established approaches, when using Hessians computed with adjoint sensitivity analysis. The hybrid computation method was more than two-fold faster than the best competitor. Thus, the proposed methods and implemented algorithms allow for the improvement of parameter estimation for medium and large scale ODE models.AvailabilityThe algorithms for second order adjoint sensitivity analysis are implemented in the Advance MATLAB Interface CVODES and IDAS (AMICI, https://github.com/ICB-DCM/AMICI/). The algorithm for hybrid profile likelihood computation is implemented in the parameter estimation toolbox (PESTO, https://github.com/ICB-DCM/PESTO/). Both toolboxes are freely available under the BSD license.Contactjan.hasenauer@helmholtz-muenchen.deSupplementary informationSupplementary data are available at Bioinformatics online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3