Ref-1/APE1 inhibition with novel small molecules blocks ocular neovascularization

Author:

Pran Babu Sardar Pasha Sheik,Sishtla KamakshiORCID,Sulaiman Rania S.,Park BominaORCID,Shetty Trupti,Shah Fenil,Fishel Melissa L.ORCID,Wikel James H.,Kelley Mark R.ORCID,Corson Timothy W.

Abstract

AbstractOcular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for NF-κB and other pro-angiogenic transcription factors. An existing inhibitor of Ref-1’s function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared to APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 μM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a GI50APX2009: 26 μM, APX2014: 5.0 μM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid nanomolar concentrations compared to control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets.Ex vivo, both APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared to vehicle (p< 0.0001, ANOVA with Dunnett’s post hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesisin vitroandex vivo, and APX2009 is an effective systemic therapy for CNVin vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3