Serial Crystallography with Multi-stage Merging oi 1000’s of Images

Author:

Bernstein Herbert J.,Andrews Lawrence C.,Foadi James,Fuchs Martin R.,Jakoncic Jean,McSweeney Sean,Schneider Dieter K.,Shi Wuxian,Skinner John,Soares Alexei,Yamada Yusuke

Abstract

KAMO and Blend provide particularly effective tools to automatically manage the merging of large numbers of data sets from serial crystallography. The requirement for manual intervention in the process can be reduced by extending Blend to support additional clustering options to increase the sensitivity to differences in unit cell parameters and to allow for clustering of nearly complete datasets on the basis of intensity or amplitude differences. If datasets are already sufficiently complete to permit it, apply KAMO once, just for reflections. If starting from incomplete datasets, one applies KAMO twice, first using cell parameters. In this step either the simple cell vector distance of the original Blend is used, or the more sensitive NCDist, to find clusters to merge to achieve sufficient completeness to allow intensities or amplitudes to be compared. One then uses KAMO again using the correlation between the reflections at the common HKLs to merge clusters in a way sensitive to structural differences that may not perturb the cell parameters sufficiently to make meaningful clusters.Many groups have developed effective clustering algorithms that use a measurable physical parameter from each diffraction still or wedge to cluster the data into categories which can then be merged to, hopefully, yield the electron density from a single protein iso-form. What is striking about many of these physical parameters is that they are largely independent from one another. Consequently, it should be possible to greatly improve the efficacy of data clustering software by using a multi-stage partitioning strategy. Here, we have demonstrated one possible approach to multi-stage data clustering. Our strategy was to use unit-cell clustering until merged data was of sufficient completeness to then use intensity based clustering. We have demonstrated that, using this strategy, we were able to accurately cluster data sets from crystals that had subtle differences.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3