Abstract
ABSTRACTInositol pyrophosphates (PP-InsPs) are an emerging class of “high-energy” intracellular signaling molecules containing one or two diphosphate groups attached to an inositol ring, with suggested roles in bioenergetic homeostasis and inorganic phosphate (Pi) sensing. Information regarding the biosynthesis of these unique class of signaling molecules in plants is scarce, however the enzymes responsible for their biosynthesis in other eukaryotes have been well described. Here we report the characterization of the two Arabidopsis VIP kinase domains, a newly discovered activity of the Arabidopsis ITPK1 and ITPK2 enzymes, and the subcellular localization of the enzymes involved in the synthesis of InsP6and PP-InsPs. Our data indicate that AtVIP1-KD and AtVIP2-KD act primarily as 1PP-specific Diphosphoinositol Pentakisphosphate Kinases (PPIP5) Kinases. The AtITPK enzymes, in contrast, can function as InsP6kinases, and thus are the missing enzyme in the plant PP-InsP synthesis pathway. Together, these enzyme classes can function in plants to produce PP-InsPs, which have been implicated in signal transduction and Pisensing pathways. We measured a higher InsP7level (increased InsP7/InsP8ratio) invip1/vip2double loss-of-function mutants, and an accumulation of InsP8(decreased InsP7/InsP8ratio) in the 35S:VIP2overexpression line relative to wild-type plants. We also report that enzymes involved in the synthesis of InsPs and PP-InsPs accumulate within the nucleus and cytoplasm of plant cells. Our work defines a molecular basis for understanding how plants synthesize PP-InsPs which is crucial for determining the roles of these signaling molecules in processes such as Pisensing.SIGNIFICANCE STATEMENTInositol pyrophosphate signaling molecules are of agronomic importance as they can control complex responses to the limited nutrient, phosphate. This work fills in the missing steps in the inositol pyrophosphate synthesis pathway and points to a role for these molecules in the plant cell nucleus. This is an important advance that can help us design future strategies to increase phosphate efficiency in plants.
Publisher
Cold Spring Harbor Laboratory
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献