Visualization and normalization of drift effect across batches in metabolome-wide association studies

Author:

Bararpour NasimORCID,Gilardi Federica,Carmeli Cristian,Sidibe Jonathan,Ivanisevic Julijana,Caputo Tiziana,Augsburger Marc,Grabherr Silke,Desvergne Béatrice,Guex Nicolas,Bochud Murielle,Thomas AurelienORCID

Abstract

AbstractAs a powerful phenotyping technology, metabolomics provides new opportunities in biomarker discovery through metabolome-wide association studies (MWAS) and identification of metabolites having regulatory effect in various biological processes. While MS-based metabolomics assays are endowed with high-throughput and sensitivity, large-scale MWAS are doomed to long-term data acquisition generating an overtime-analytical signal drift that can hinder the uncovering of true biologically relevant changes.We developed “dbnorm”, a package in R environment, which allows visualization and removal of signal heterogeneity from large metabolomics datasets. “dbnorm” integrates advanced statistical tools to inspect dataset structure, at both macroscopic (sample batch) and microscopic (metabolic features) scales. To compare model performance on data correction, “dbnorm” assigns a score, which allows the straightforward identification of the best fitting model for each dataset. Herein, we show how “dbnorm” efficiently removes signal drift among batches to capture the true biological heterogeneity of data in two large-scale metabolomics studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3