An evolutionary trade-off between parasite virulence and dispersal at experimental invasion fronts

Author:

Nørgaard Louise Solveig,Zilio GiacomoORCID,Saade Camille,Gougat-Barbera Claire,Hall Matthew D.,Fronhofer Emanuel A.ORCID,Kaltz Oliver

Abstract

ABSTRACTEco-evolutionary processes may play an important role in the spatial spread of infectious disease. Current theory predicts more exploitative parasites to evolve in highly connected populations or at the front of spreading epidemics. However, many parasites rely on host dispersal to reach new populations. This may lead to conflict between local transmission and global spread, possibly counteracting selection for higher virulence. Here, we used the freshwater host Paramecium caudatum and its bacterial parasite Holospora undulata to investigate parasite evolution under an experimental range expansion scenario with natural host dispersal. We find that parasites evolving at experimental range fronts favoured higher dispersal rates of infected hosts than did parasites evolving in core populations. Front parasites further showed lower levels of virulence (host division and survival) and delayed development of infection, consistent with parameter estimates from an epidemiological model that we fitted on experimental time-series data. This combined evidence suggests an evolutionary trade-off between virulence and host-mediated dispersal, with a concomitant reduction in the investment into horizontal transmission. Our experiment illustrates how parasite evolution can be shaped by divergent selection encountered in different segments of an epidemic wave. Such an interplay between demography and spatial selection has important implications for the understanding and management of emerging diseases, and, more generally, for biological invasions and other non-equilibrium scenarios of spreading populations.SIGNIFICANCE STATEMENTWhat drives parasite evolution in spatially expanding epidemics? Many parasites require dispersal of infected hosts to reach new patches, and this may produce specific adaptations enhancing spatial spread. We performed experimental range expansions in an aquatic model system, with natural dispersal of infected hosts. Parasites from experimental range fronts were less virulent and interfered less with host dispersal, but also invested less in horizontal transmission than parasites from the range core. Thus, dispersal adaptation at the front may come at a cost of reduced horizontal transmission, a trade-off rarely considered in theoretical models on parasite virulence evolution. These results have important implications in the context of emerging diseases, and for parasite evolution during biological invasions or other spatial non-equilibrium scenarios.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3