CRISPR-based bioengineering of the Transferrin Receptor revealed a role for Rab7 in the biosynthetic secretory pathway

Author:

Deffieu Maika S.,Cesonyte Ieva,Delalande FrançoisORCID,Boncompain GaelleORCID,Dorobantu CristinaORCID,Song EliORCID,Lucansky VincentORCID,Hirschler Aurélie,Cianferani SarahORCID,Xu Tao,Perez FranckORCID,Carapito ChristineORCID,Gaudin RaphaelORCID

Abstract

AbstractThe regulated secretory trafficking of neosynthesized transmembrane receptors is particularly challenging to investigate as it is under-represented at steady state compared to the abundance of the other trafficking routes. Here, we combined the retention using selective hook (RUSH) system to a CRISPR/Cas9 gene editing approach (eRUSH) to identify molecular players involved in the trafficking of neosynthesized Transferrin Receptor (TfR) en route to the plasma membrane (PM). TfR-eRUSH monoclonal cells expressing endogenous, ER-retainable and fluorescent TfR were engineered and characterized. Spatiotemporal quantitative proteomics of TfR-eRUSH cells allowed the identification of molecular partners associated with TfR-containing membranes and provided a comprehensive list of potential regulators, co-trafficking cargos, and enriched pathways. Furthermore, we chose to focus our attention on the Rab GTPase family members for their function as vesicle trafficking regulators and performed a Rab-targeted siRNA screen that we correlated to our proteomics data. Unexpectedly, we identified Rab7-harboring vesicles as an intermediate compartment of the Golgi-to-PM transport of the neosynthetic TfR. These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles, also involved in Golgi-to-PM transport. However, Rab6A-TfR vesicles delivered TfR directly to the PM, while in contrast, Rab7A was transiently associated to neosynthetic TfR-containing post-Golgi vesicles but dissociated before PM vesicle fusion. Together, our study proposes the eRUSH as a powerful tool to further study the secretory pathway and reveals an unforeseen role for Rab7 in the neosynthetic transport of the TfR, highlighting the diversity of the secretory vesicles’ nature for a given cargo.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3