New mathematical modelling tools for co-culture experiments: when do we need to explicitly account for signalling molecules?

Author:

Jin Wang,Wang Haolu,Liang Xiaowen,Roberts Michael S,Simpson Matthew JORCID

Abstract

AbstractMathematical models are often applied to describe cell migration regulated by diffusible signalling molecules. A typical feature of these models is that the spatial and temporal distribution of the signalling molecule density is reported by solving a reaction–diffusion equation. However, the spatial and temporal distributions of such signalling molecules are not often reported or observed experimentally. This leads to a mismatch between the amount of experimental data available and the complexity of the mathematical model used to simulate the experiment. To address this mismatch, we develop a discrete model of cell migration that can be used to describe a new suite of co–culture cell migration assays involving two interacting subpopulations of cells. In this model, the migration of cells from one subpopulation is regulated by the presence of signalling molecules that are secreted by the other subpopulation of cells. The spatial and temporal distribution of the signalling molecules is governed by a discrete conservation statement that is related to a reaction–diffusion equation. We simplify the model by invoking a steady state assumption for the diffusible molecules, leading to a reduced discrete model allowing us to describe how one subpopulation of cells stimulates the migration of the other subpopulation of cells without explicitly dealing with the diffusible molecules. We provide additional mathematical insight into these two stochastic models by deriving continuum limit partial differential equation descriptions of both models. To understand the conditions under which the reduced model is a good approximation of the full model, we apply both models to mimic a set of novel co–culture assays and we systematically explore how well the reduced model approximates the full model as a function of the model parameters.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3