Author:
Zhuo Shiyan,Yang Guiqin,Zhuang Li
Abstract
AbstractElectrically conductive pili (e-pili) enable electron transport over multiple cell lengths to extracellular environments and play an important role in extracellular electron transfer (EET) of Geobacter species. To date, the studies of e-pili have mainly focused on Geobacter sulfurreducens and the closely related Geobacter metallireducens because of their developed genetic manipulation systems. We investigated the role of G. soli pili in EET by directly deleting the pilin gene, pilA, which is predicted to encode e-pili. Deletion of pilA, prevented the production of pili, resulting in poor Fe(III) oxide reduction and low current production, implying that G. soli pili is required for EET. To further evaluate the conductivity of G. soli pili compared with G. sulfurreducens pili, the pilA of G. soli was heterologously expressed in G. sulfurreducens, yielding the G. sulfurreducens strain GSP. This strain produced abundant pili with similar conductivity to the control strain that expressed native G. sulfurreducens pili, consistent with G. soli as determined by direct measurement, which suggested that G. soli pili is electrically conductive. Surprisingly, strain GSP was deficient in Fe(III) oxide reduction and current production due to the impaired content of outer-surface c-type cytochromes. These results demonstrated that heterologous pili of G. sulfurreducens severely reduces the content of outer-surface c-type cytochromes and consequently eliminates the capacity for EET, which strongly suggests an attention should be paid to the content of c-type cytochromes when employing G. sulfurreducens to heterologously express pili from other microorganisms.IMPORTANCEThe studies of electrically conductive pili (e-pili) of Geobacter species are of interest because of its application prospects in electronic materials. e-Pili are considered a substitution for electronic materials due to its renewability, biodegradability and robustness. Continued exploration of additional e-pili of Geobacter soli will improve the understanding of their biological role in extracellular electron transfer and expand the range of available electronic materials. Heterologously expressing the pilin genes from phylogenetically diverse microorganisms has been proposed as an emerging approach to screen potential e-pili according to high current densities. However, our results indicated that a Geobacter sulfurreducens strain heterologously expressing a pilin gene produced low current densities that resulted from a lack of content of c-type cytochromes, which were likely to possess e-pili. These results provide referential significance to yield e-pili from diverse microorganisms.
Publisher
Cold Spring Harbor Laboratory